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ABSTRACT 
Within the context of crude oil futures pricing, this study compares the forecast 
performance of recurrent neural network (RNN)-based models to that of an 
autoregressive-generalized autoregressive conditional heteroscedasticity (AR-GARCH) 
model and a vector autoregression (VAR) model. For the RNN-based models, we use 
simple recurrent network, long short-term memory, and gated recurrent unit models, as 
well as hybrids thereof. Our empirical results indicate that RNN-based models outperform 
the AR-GARCH model and VAR model. We also find that neither adding the same type 
of layer nor combining different types of layers statistically significantly improves 
forecast performance.  
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1. INTRODUCTION 
At present, crude oil is essential to the world economy. Many oil products contribute to 
our daily lives and have become necessities. However, the prices of crude oil are highly 
unstable and respond to various factors such as U.S. monetary policy, reduced cooperation 
among Organization of the Petroleum Exporting Countries in terms of oil production, and 
stock price movements. The complex interrelationships among these factors have had 
disastrous effects on the dynamics of crude oil prices. According to Bildirici (2019), crude 
oil prices exhibit nonlinear and chaotic behaviors, making it difficult for one to forecast 
their prices. To stabilize oil exporters and importers’ economies — and consequently that 
of the world — in the face of related risks, we need to build an accurate forecasting model 
that can capture the nonlinear and chaotic behavior of oil prices.  
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Several studies have attempted to build such models. Moshiri and Foroutan (2006) 
built feedforward multilayer artificial neural network (ANN), standard autoregressive 
moving average (ARMA), and exponential generalized autoregressive conditional 
heteroscedasticity (EGARCH) models, and found that the ANN model outperforms the 
other two. Wen et al. (2006) found that a support vector machine outperforms ARMA and 
a back-propagation neural network (BPNN) in terms of forecasting performance. Wang 
and Wang (2016) propose an Elman recurrent neural network (ERNN) and use an ERNN 
with a stochastic time-effective (ST-ERNN) function; they found that ST-ERNN is 
superior to both ERNN and BPNN. Chen et al. (2017) used a long short-term memory 
(LSTM) model to forecast crude oil prices.  

In the current study, we compare the forecast performance of recurrent neural network 
(RNN)-based models, an autoregressive-generalized autoregressive conditional 
heteroscedasticity (AR-GARCH) model, and a vector autoregression (VAR) model. We 
use four types of RNN-based models—namely, simple recurrent network (SRN), LSTM, 
and gated recurrent unit (GRU) models, as well as hybrids thereof. The hybrid models 
include different types of RNNs for the first and second layers. 

Our empirical results indicate that RNN-based models outperform AR-GARCH and 
VAR models. We also found that neither adding the same type of layer nor combining 
different layer types has a statistically significant effect on forecast performance.  

This paper is organized as follows. In Section 2, we briefly describe the AR-GARCH, 
VAR, SRN, LSTM, and GRU models. Then, in Section 3, we provide information on our 
data. We describe our forecasting models and empirical results in Section 4. Finally, 
Section 5 concludes. 
 
2. METHODOLOGY 
2.1 Autoregressive-Generalized Autoregressive Conditional Heteroscedasticity  
AR-GARCH models can capture linear time relationships with heteroscedasticity. For 
this reason, this model is used to analyze stock returns (Sembiring et al., 2016), for 
example. An AR(k)-GARCH(p, q) model is expressed as follows. 

𝑌𝑌𝑡𝑡 = θ + �𝜓𝜓𝑙𝑙𝑌𝑌𝑡𝑡−𝑙𝑙

𝑘𝑘

𝑙𝑙=1

+ 𝜀𝜀𝑡𝑡  , (1)

𝜎𝜎𝑡𝑡2 = 𝜔𝜔 + �𝛼𝛼𝑖𝑖𝜎𝜎𝑡𝑡−𝑖𝑖2

𝑝𝑝

𝑖𝑖=1

+ �𝛽𝛽𝑗𝑗𝜀𝜀𝑡𝑡−𝑗𝑗2

𝑞𝑞

𝑗𝑗=1

, (2)

𝜀𝜀𝑡𝑡~𝑊𝑊𝑊𝑊(0,𝜎𝜎𝑡𝑡2). (3)

 

Here, 𝜀𝜀𝑡𝑡 represents the error term at time t, and 𝑊𝑊𝑊𝑊(0,𝜎𝜎𝑡𝑡2) is the white noise whose 
mean is 0 and variance is 𝜎𝜎𝑡𝑡2 . In this study, we assume 𝑊𝑊𝑊𝑊(0,𝜎𝜎𝑡𝑡2)  as Student’s t 
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distribution.  
 
2.2 Vector Autoregression 
A VAR model is a linear multivariate autoregressive model that can capture linear time 
interrelationships among multiple variables. The model with p lags is 

Yt = C + �Φ𝑖𝑖𝑌𝑌𝑡𝑡−𝑖𝑖 + 𝜖𝜖𝑡𝑡

p

i=1

, (4) 

where C,Φ, and 𝜖𝜖𝑡𝑡 represent a constant vector, coefficient matrix, and error term vector 
at time t, respectively, which satisfies the following conditions: 

E[ϵt] = 0
V[ϵt] = Σ (5)

𝐸𝐸[𝜖𝜖𝑡𝑡𝜖𝜖𝑡𝑡−𝑠𝑠] = 0   𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠 > 0.
 

Here, E[ ] is the expectations operator, V[ ] is the variance operator, and Σ is a nondiagonal 
covariance matrix of ϵt.  
 
2.3 Fully Connected Layer 
A fully connected feedforward neural network (FNN) is a traditional type of ANN often 
used to aggregate the output of the last layer and transform it into an adequate shape. Let 
𝑌𝑌𝑡𝑡  and 𝑋𝑋𝑡𝑡 denote the output vector and the input vector at time t, respectively. The output 
vector is then defined as 

Yt = 𝑓𝑓(𝑊𝑊𝑋𝑋𝑡𝑡 + 𝑏𝑏), (6) 
where 𝑓𝑓(∙) represents the activation function and 𝑊𝑊 is a weight matrix. 
 
2.4 Recurrent Neural Network  
An RNN (Rumelhart et al., 1986) is an extension of an FNN. Unlike FNNs, RNNs can 
maintain time-series dynamics by using their internal memory. This structure is given by: 

Mt = 𝑓𝑓(𝑋𝑋𝑡𝑡,   𝑀𝑀𝑡𝑡−1), (7) 
where 𝑀𝑀𝑡𝑡 and 𝑋𝑋𝑡𝑡 are the internal memory and input vector at time t, respectively, and 
𝑓𝑓(∙) is the activation function. A sigmoid function is a common activation function, and 
it enables RNNs to capture nonlinear interrelationships among multiple variables of an 
input—something that VAR cannot do. Eq. (7) implies that the internal memory at time 
t – 1 is fed back to that at time t for 𝑡𝑡 ≥ 1. This dependency enables RNNs to hold time-
series dynamics. 

An SRN is a basic RNN model whose output is computed as follows. 
𝑌𝑌𝑡𝑡 = tanh(𝑊𝑊𝑌𝑌𝑌𝑌𝑡𝑡−1 + 𝑊𝑊𝑋𝑋𝑋𝑋𝑡𝑡 + 𝑏𝑏𝑌𝑌) . (8) 

Here, 𝑌𝑌𝑡𝑡 and 𝑋𝑋𝑡𝑡 denote the output vector and input vector at time t, respectively. W and 
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b are a weight matrix and bias vector, respectively, and tanh (∙) is a hyperbolic tangent. 
Eq. (8) introduces internal memory, which enables the SRN to store time-dependent 
relationships. 
 
2.5 Long Short-Term Memory  
While an SRN can learn short-term dependency, it has difficulty learning long-term 
dependency, on account of the vanishing gradient problem. Hochreiter and Schmidhuber 
(1997) first developed LSTM to overcome this problem, and Gers et al. (2000) later 
introduced LSTM with a forget gate. In the current study, we follow the latter. 

Let 𝐹𝐹𝑡𝑡, 𝐼𝐼𝑡𝑡 ,𝑂𝑂𝑡𝑡,𝐶𝐶𝑡𝑡, 𝑎𝑎𝑎𝑎𝑎𝑎 𝑌𝑌𝑡𝑡 denote the forget gate vector, input gate vector, output gate 
vector, cell state (a state of a memory cell) vector, and output vector at time t, respectively. 
The forward pass is  

𝐹𝐹𝑡𝑡 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑠𝑠𝑎𝑎(𝑊𝑊𝐹𝐹𝑋𝑋𝑋𝑋𝑡𝑡 + 𝑊𝑊𝐹𝐹𝐹𝐹𝑌𝑌𝑡𝑡−1 + 𝑏𝑏𝐹𝐹), (9)
𝐼𝐼𝑡𝑡 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑠𝑠𝑎𝑎(𝑊𝑊𝐼𝐼𝑋𝑋𝑋𝑋𝑡𝑡 + 𝑊𝑊𝐼𝐼𝐹𝐹𝑌𝑌𝑡𝑡−1 + 𝑏𝑏𝐼𝐼), (10)

Ot = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑠𝑠𝑎𝑎(𝑊𝑊𝑂𝑂𝑋𝑋𝑋𝑋𝑡𝑡 + WOHYt−1 + 𝑏𝑏𝑂𝑂), (11)
𝐶𝐶𝑡𝑡 = 𝐹𝐹𝑡𝑡 ∗ 𝐶𝐶𝑡𝑡−1 + 𝐼𝐼𝑡𝑡 ∗ tanh(𝑊𝑊𝐶𝐶𝑋𝑋𝑋𝑋𝑡𝑡 + 𝑊𝑊𝐶𝐶𝐹𝐹𝑌𝑌𝑡𝑡−1 + 𝑏𝑏𝐶𝐶) , (12)
𝑌𝑌𝑡𝑡 = 𝑂𝑂𝑡𝑡 ∗ tanh(𝐶𝐶𝑡𝑡) , (13)

 

where sigmoid(∙) and ∗ represent a sigmoid function and Hadamard product operator, 
respectively. W and b are a weight matrix and bias vector, respectively.  

Unlike SRN, LSTM has four types of time-recurrent structure—namely, a forget gate, 
input gate, output gate, and memory cell. A forget gate decides when to reset the 
information from the previous cell state, while an input gate decides when to add the 
information from the input and the previous output to the current cell state; an output gate 
decides when to output the information from the current cell state. A memory cell stores 
information from the previous inputs, current inputs, and previous outputs. Given the 
structure of a memory cell, as stated in Eq. (12), LSTM precludes the vanishing gradient 
problem. 

 
2.6 Gated Recurrent Unit  
LSTM is used successfully in many tasks, such as machine translation (Sutskever et al., 
2014; Yao et al., 2015; Wu et al., 2016). However, owing to its structural complexity, 
LSTM does have a drawback in terms of its learning speed. Cho et al. (2014) therefore 
propose GRU to reduce the complexity. 

Let 𝑈𝑈𝑡𝑡 ,𝑅𝑅𝑡𝑡 ,𝑋𝑋𝑡𝑡 , and 𝑌𝑌𝑡𝑡 denote the update gate vector, reset gate vector, input vector, 
and output vector at time t, respectively. The forward pass is  
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Ut = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑠𝑠𝑎𝑎(𝑊𝑊𝑈𝑈𝑋𝑋𝑋𝑋𝑡𝑡 + 𝑊𝑊𝑈𝑈𝑌𝑌𝑌𝑌𝑡𝑡−1 + 𝑏𝑏𝑈𝑈), (14)
Rt = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑠𝑠𝑎𝑎(𝑊𝑊𝑅𝑅𝑋𝑋𝑋𝑋𝑡𝑡 + 𝑊𝑊𝑅𝑅𝑌𝑌𝑌𝑌𝑡𝑡−1 + 𝑏𝑏𝑅𝑅), (15)
Yt = (1 −𝑈𝑈𝑡𝑡) ∗ 𝑌𝑌𝑡𝑡−1 + 𝑈𝑈𝑡𝑡 ∗ tanh(𝑊𝑊𝑌𝑌𝑋𝑋𝑋𝑋𝑡𝑡 + 𝑊𝑊𝑌𝑌𝑅𝑅(𝑅𝑅𝑡𝑡 ∗ 𝑌𝑌𝑡𝑡−1) + 𝑏𝑏𝑌𝑌) , (16)

 

where W and b represent a weight matrix and bias vector, respectively. In comparing 
Eqs. (9–10) and (12) to Eqs. (14) and (16), we see that GRU integrates a forget gate and 
input gate into an update gate and thus reduces the complexity of LSTM.  
 
3. DATA 
In this study, we use daily data pertaining to West Texas Intermediate (WTI) futures, 
NASDAQ-100, and US soy oil futures prices. We use US soy oil futures prices and 
NASDAQ-100 as explanatory variables. The data, which we obtained from 
Investing.com,1 covers the March 31, 1983–February 21, 2019 period, and consists of 
9,004 observations after removing data pertaining to days with missing values. Fig. (1) 
shows the original WTI futures prices, NASDAQ-100, and US soy oil futures prices, and 
Fig. (2) shows their serial correlation. As we see in Fig. (2), the data seems to have serial 
correlation. Since VAR is not appropriate for modeling data with serial correlation, we 
must remove it first. Among the available methods, we use first-log differencing: 

𝛥𝛥𝑡𝑡 = log(𝑋𝑋𝑡𝑡) − log(𝑋𝑋𝑡𝑡−1), (17)  
where 𝛥𝛥𝑡𝑡 and 𝑋𝑋𝑡𝑡  represent the new data and original data at time t, respectively. We 
illustrate their serial correlations in Figs. (3) and (4), after applying first-log differencing. 
Fig. (4) indicates that the method seems to have removed the serial correlation in the data. 

Feature scaling can promote better performance and faster training, and we therefore 
rescale the data using standardization. Let Z and Δ denote the standardized data and the 
data before standardization, respectively. The standardization is described by: 

𝑊𝑊 =
𝛥𝛥 − 𝜇𝜇
𝜎𝜎  , (18) 

where 𝜎𝜎 and 𝜇𝜇 represent the sample standard deviation and sample mean of attribute Δ, 
respectively. Using this method, we can transform the mean and standard deviation of the 
data into 0 and 1. Fig. (5) depicts the standardized data. In comparing Fig. (3) to Fig. (5), 
we can confirm that we rescaled the data successfully. 
  

 
1 See https://www.investing.com/ (accessed February 22, 2019). 

https://www.investing.com/
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Figure 1. Original WTI futures prices (top), NASDAQ-100 (middle), US soy oil futures 
prices (bottom). 
 

 
Figure 2. Serial correlation of the original data. In this figure, NASD and USSO stand 
for NASDAQ-100 and US soy oil futures prices, respectively. 
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Figure 3. WTI futures prices (top), NASDAQ-100 (middle), and US soy oil futures 
prices (bottom), after first-log differencing.  
 

 
Figure 4. Serial correlation of the data after first-log differencing.  
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Figure 5. Standardized WTI futures prices (top), standardized NASDAQ-100 (middle), 
and standardized US soy oil futures prices (bottom). Standardization is performed after 
first-log differencing. 
 
4. EMPIRICAL RESULTS 
4.1 Evaluation Criteria 
To evaluate the forecasting models, we use the mean absolute error (MAE) and mean 
directional accuracy (MDA), and apply the Diebold–Mariano test (DM test) to the 
forecasting models to examine whether or not there are statistically significant differences 
in forecast performance.  
 
4.1.1 Mean Absolute Error 
MAE is a measure of the differences between actual and predicted values. We calculate 
it as follows. 

MAE =
1
𝑁𝑁� |𝑓𝑓𝑖𝑖 − 𝑊𝑊𝑖𝑖|

𝑁𝑁

𝑖𝑖=1

, (19) 

where 𝑊𝑊𝑖𝑖, 𝑓𝑓𝑖𝑖 , and 𝑁𝑁 are the actual and predicted values of the standardized data at time i 
and the sample size, respectively. For this criterion, a model with lower MAE values have 
better forecasting ability. 
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4.1.2 Mean Directional Accuracy 
MDA is a measure of the differences between the forecast direction and the direction in 
which the actual value fluctuates. This criterion is defined as follows. 

MDA =
1
𝑁𝑁�𝜂𝜂𝑖𝑖

𝑁𝑁

𝑖𝑖

, (20)

𝜂𝜂𝑖𝑖 = �1,    𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎(𝑋𝑋𝑖𝑖 − 𝑋𝑋𝑖𝑖−1) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎(𝑋𝑋�𝑖𝑖 − 𝑋𝑋𝑖𝑖−1)
0, 𝑓𝑓𝑡𝑡ℎ𝑒𝑒𝑓𝑓𝑒𝑒𝑠𝑠𝑠𝑠𝑒𝑒

 , (21)

 

where 𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎(∙) represents the sign function, and 𝑋𝑋𝑖𝑖 and 𝑋𝑋𝚤𝚤�  are the observed and 
predicted values of the original data at time i, respectively. Note that we can transform 
sign(𝑋𝑋𝑖𝑖 − 𝑋𝑋𝑖𝑖−1) as follows. 

𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎(𝑋𝑋𝑖𝑖 − 𝑋𝑋𝑖𝑖−1) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎(log(𝑋𝑋𝑖𝑖) − log(𝑋𝑋𝑖𝑖−1)) 
= 𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎(Δi) ∵ Δi = log(𝑋𝑋𝑖𝑖) − log (𝑋𝑋𝑖𝑖−1)

= 𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎 �𝑊𝑊𝑖𝑖 +
𝜇𝜇
𝜎𝜎� ∵ 𝑊𝑊𝑖𝑖 =

Δi − 𝜇𝜇
𝜎𝜎 ,𝜎𝜎 > 0, (22)

 

where 𝜇𝜇 and 𝜎𝜎 represent the sample mean and standard deviation of attribute 𝛥𝛥, 
respectively. We also can transform 𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎�𝑋𝑋𝚤𝚤� − 𝑋𝑋𝑖𝑖−1� as follows: 

𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎�𝑋𝑋�i − 𝑋𝑋𝑖𝑖−1� = 𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎�log�𝑋𝑋�𝑖𝑖� − log(𝑋𝑋𝑖𝑖−1)� 
= 𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎�Δ�i� ∵ Δ�i = log�𝑋𝑋�𝑖𝑖� − log (𝑋𝑋𝑖𝑖−1)

= 𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎 �𝑓𝑓𝑖𝑖 +
𝜇𝜇
𝜎𝜎� ∵ 𝑓𝑓𝑖𝑖 =

�̂�𝛥𝑖𝑖 − 𝜇𝜇
𝜎𝜎 ,𝜎𝜎 > 0. (23)

 

Finally, using Eqs. (22) and (23), we can transform Eq. (21) into the following equation: 

ηi = �1, 𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎(Z𝑖𝑖 +
𝜇𝜇
𝜎𝜎) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎(𝑓𝑓𝑖𝑖 +

𝜇𝜇
𝜎𝜎)

0, 𝑓𝑓𝑡𝑡ℎ𝑒𝑒𝑓𝑓𝑒𝑒𝑠𝑠𝑠𝑠𝑒𝑒
. (24) 

As Eq. (24) shows, we need to check the signs of 𝑊𝑊i + 𝜇𝜇
𝜎𝜎
 and 𝑓𝑓𝑖𝑖 + 𝜇𝜇

𝜎𝜎
 when calculating 

MDA. With respect to this criterion, a higher MDA indicates better forecasting ability. 
 
4.1.3 Diebold–Mariano Test 
The DM test examines whether or not the null hypothesis (i.e., that the competing model 
has the same predictive accuracy) is statistically true. According to Diebold and Mariano 
(1995), the forecast error 𝜖𝜖𝑖𝑖𝑡𝑡 is 

𝜖𝜖𝑖𝑖𝑡𝑡 = 𝑓𝑓𝑖𝑖𝑡𝑡 − 𝑊𝑊𝑡𝑡  i = 1, 2, (25) 
where 𝑓𝑓𝑖𝑖𝑡𝑡  and 𝑊𝑊𝑡𝑡 are the predicted and actual values at time t, respectively. 
Let g(𝜖𝜖𝑖𝑖𝑡𝑡) denote the loss function. The loss differential 𝑎𝑎𝑡𝑡 is then 

𝑎𝑎𝑡𝑡 = 𝑠𝑠(𝜖𝜖1𝑡𝑡) − 𝑠𝑠(𝜖𝜖2𝑡𝑡). (26) 
In this study, we use 𝑠𝑠(𝜖𝜖𝑖𝑖𝑡𝑡) = |𝜖𝜖𝑖𝑖𝑡𝑡|.  
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In this test, the null hypothesis states that H0: E[𝑎𝑎𝑡𝑡] = 0   𝑠𝑠𝑡𝑡 , while the alternative 
hypothesis is that H1: 𝐸𝐸[𝑎𝑎𝑡𝑡] ≠ 0  ∀𝑡𝑡. We finally define the statistic for the DM test as  

DM =
𝑎𝑎̅

� 𝑠𝑠𝑁𝑁

, (27) 

where 𝑎𝑎̅, 𝑠𝑠, and 𝑁𝑁 represent the sample mean, the variance of 𝑎𝑎𝑡𝑡, and the sample size, 
respectively. If the null hypothesis is true, then the DM statistic is asymptotically 
distributed as N(0, 1). Here, N(0, 1) represents the standard normal distribution.  

To overcome the problem of multiple comparisons, we use the Bonferroni method 
(Bonferroni 1935, 1936), or set the significance level to (5%)/n and control the family-
wise error at or under 5%. Additionally, we perform n number of tests.  
 
4.2 Forecasting Models 
We construct six main types of forecasting model—namely, AR-GARCH, VAR, SRN, 
LSTM, GRU, and hybrid models. 

We construct the AR(1)-GARCH(1,1) model and VAR model with five lags, as 
benchmarks. The number of VAR lags is determined within 10 or fewer lags, according 
to the Akaike information criterion. We use the ordinary least squares method to estimate 
the model.  

Each SRN, LSTM, and GRU model consists of one or two RNN layers of the same 
kind and one fully connected layer; meanwhile, each of the hybrid models consists of two 
different kinds of recurrent layers and one fully connected layer. An RNN layer is an SRN, 
LSTM, or GRU layer. We describe the hybrid models as, for example, SRNLSTM, which 
indicates that the first recurrent layer is an SRN layer and the second layer is an LSTM 
layer. In this study, we use the hard-sigmoid function as the sigmoid function for an LSTM 
or GRU layer, and the linear function as the activation function on a fully connected layer. 
The number of units in each recurrent layer is 20, 40, 60, or 80, and that of the fully 
connected layer is one. We set RMSprop as the optimization algorithm, MAE as the target 
of optimization, and the batch size to 32. Moreover, we use the weight that minimizes 
MAE on the validation data within 100 iterations, to preclude both overfitting and 
underfitting.  

We divide the dataset into two parts, with 80% of it being used for training and the 
remaining 20% for evaluating the models. For the training models other than AR(1)-
GARCH(1,1) and VAR, we use 10% of the training data as validation data.  

Finally, we implement these models by using the Keras, TensorFlow, random, and 
NumPy modules in Python 3.2.6. To obtain reproducible results, we set the random seed 
in Python to 0, that in the NumPy module to 42, that in the random module to 12345, and 
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that in the TensorFlow module to 1234; we also make the TensorFlow module use a single 
thread.  
 
4.3 Empirical Results 
Tables 1–5 report the MAE, MDA, and DM test results. As Tables 1–4 show, RNN-based 
models outperform the AR-GARCH model and VAR model in terms of both MAE and 
MDA—that is, nonlinear models are more suitable for forecasting WTI futures prices 
than are linear models. This implies that there may be nonlinear interdependencies among 
WTI futures prices, the NASDAQ-100, and US soy oil futures prices. Table 5 shows that 
all of the differences in forecast performance between the AR-GARCH and RNN-based 
models and between the VAR and RNN-based models are significant at the (5%)/31 level. 
Additionally, the two-layered SRN model with 60 units on the first layer and 40 units on 
the second layer has the lowest MAE, while the two-layered GRU model with 60 units 
on the first layer and 40 units on the second layer and the GRUSRN model with 80 units 
on the first layer and 20 units on the second layer have the highest MDA. The models that 
include an SRN layer tend to have better forecasting performance with respect to both 
MAE and MDA than models lacking one. This tendency indicates that the 
interrelationships among WTI futures prices, NASDAQ-100, and US soy oil futures 
prices may be short-term dependent, rather than long-term dependent. 
 
Table 1. MAE and MDA results for AR(1)-GARCH(1,1), VAR, and the best SRN, LSTM, 
and GRU models, based on MAE  

Model Units Recurrent 
Layers 

MAE MDA 

AR(1)-
GARCH(1,1) 

– – 0.9167 48.11% 

VAR(5) – – 0.6351 47.50% 
SRN 60 1 0.6269 52.05% 

LSTM 40 1 0.6279 51.66% 
GRU 40 1 0.6282 51.55% 
SRN2 [60, 40] 2 0.6268 52.27% 

LSTM2 [80, 80] 2 0.6280 51.72% 
GRU2 [40, 20] 2 0.6283 51.16% 

Notes: VAR(5) represents the VAR model with five lags. SRN, LSTM, GRU, SRN2, 
LSTM2, and GRU2 denote the best one-layered SRN, one-layered LSTM, one-layered 
GRU, two-layered SRN, two-layered LSTM, and two-layered GRU models, based on 
MAE. [i, j] means that the first and second layers’ units are i and j, respectively. 
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Table 2. MAE and MDA results for the hybrid models, based on MAE 

Model Units Recurrent 
Layers 

MAE MDA 

SRNLSTM [20, 60] 2 0.6273 52.16% 
SRNGRU [80, 60] 2 0.6271 52.16% 

LSTMSRN [60, 40] 2 0.6282 51.44% 
LSTMGRU [40, 20] 2 0.6277 51.77% 
GRUSRN [80, 60] 2 0.6276 52.05% 

GRULSTM [60, 80] 2 0.6282 51.27% 
Notes: SRNLSTM, SRNGRU, LSTMSRN, LSTMGRU, GRUSRN, and GRULSTM 
denote the best SRNLSTM, SRNGRU, LSTMSRN, LSTMGRU, GRUSRN, and 
GRULSTM models, based on MAE. [i, j] means that the first and second layers’ units are 
i and j, respectively.  
 
Table 3. MAE and MDA results of AR(1)-GARCH(1,1), VAR, and the best SRN, 
LSTM, and GRU models based on MDA 

Model Units Recurrent 
Layers 

MAE MDA 

AR(1)-
GARCH(1,1) 

– – 0.9167 48.11% 

VAR(5) – – 0.6351 47.50% 
SRN 60 1 0.6269 52.05% 

LSTM 80 1 0.6280 52.00% 
GRU 80 1 0.6283 52.16% 
SRN2 [60, 40] 2 0.6268 52.27% 

LSTM2 [60, 60] 2 0.6282 51.83% 
GRU2 [60, 40] 2 0.6287 52.33% 

Notes: VAR(5) represents the VAR model with five lags. SRN, LSTM, GRU, SRN2, 
LSTM2, and GRU2 denote the best one-layered SRN, one-layered LSTM, one-layered 
GRU, two-layered SRN, two-layered LSTM, and two-layered GRU models, based on 
MDA. [i, j] means that the first and second layers’ units are i and j, respectively. 
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Table 4. MAE and MDA results of the best hybrid models, based on MDA 
Model Units Recurrent 

Layers 
MAE MDA 

SRNLSTM [60, 80] 2 0.6276 52.22% 
SRNGRU [80, 60] 2 0.6271 52.16% 

LSTMSRN [40, 60] 2 0.6283 52.22% 
LSTMGRU [20, 40] 2 0.6277 52.05% 
GRUSRN [80, 20] 2 0.6277 52.33% 

GRULSTM [20, 80] 2 0.6287 51.66% 
Notes: SRNLSTM, SRNGRU, LSTMSRN, LSTMGRU, GRUSRN, and GRULSTM 
denote the best SRNLSTM, SRNGRU, LSTMSRN, LSTMGRU, GRUSRN, and 
GRULSTM models, based on MDA. [i, j] means that the first and second layers’ units are 
i and j, respectively. 
 
Table 5. DM test results 

 AR(1)-GARCH(1,1) vs. VAR(5) AR(1)-GARCH(1,1) vs. SRN 
Statistic 
p-value 

16.920 
<2.2*10-16 

17.114 
<2.2*10-16 

 AR(1)-GARCH(1,1) vs. SRN2 AR(1)-GARCH(1,1) vs. LSTM 
Statistic 
p-value 

16.751 
<2.2*10-16 

17.093 
<2.2*10-16 

 AR(1)-GARCH(1,1) vs. LSTM2 AR(1)-GARCH(1,1) vs. GRU 
Statistic 
p-value 

17.157 
<2.2*10-16 

17.169 
<2.2*10-16 

 AR(1)-GARCH(1,1) vs. GRU2 AR(1)-GARCH(1,1) vs. 
 Statistic 

p-value 
17.256 

<2.2*10-16 

16.997 
<2.2*10-16 

 AR(1)-GARCH(1,1) vs. SRNGRU AR(1)-GARCH(1,1) vs. 
 Statistic 

p-value 
17.103 

<2.2*10-16 

17.061 
<2.2*10-16 

 AR(1)-GARCH(1,1) vs. 
 

AR(1)-GARCH(1,1) vs. GRUSRN 
Statistic 
p-value 

17.215 
<2.2*10-16 

17.052 
<2.2*10-16 

 AR(1)-GARCH(1,1) vs. 
 

 
Statistic 
p-value 

17.196 
<2.2*10-16 
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 VAR(5) vs. SRN VAR(5) vs. SRN2 
Statistic 
p-value  

4.162 
3.302*10-5 

3.831 
1.316*10-4 

 VAR(5) vs. LSTM VAR(5) vs. LSTM2 
Statistic 
p-value 

3.411 
6.593*10-4 

3.598 
3.293*10-4 

 VAR(5) vs. GRU VAR(5) vs. GRU2 
Statistic 
p-value 

3.388 
7.184*10-4 

3.364 
7.826*10-4 

 VAR(5) vs. SRNLSTM VAR(5) vs. SRNGRU 
Statistic 
p-value 

3.824 
1.359*10-4 

4.000 
6.575*10-5 

 VAR(5) vs. LSTMSRN VAR(5) vs. LSTMGRU 
Statistic 
p-value 

3.450 
5.723*10-4 

3.673 
2.461*10-4 

 VAR(5) vs. GRUSRN VAR(5) vs. GRULSTM 
Statistic 
p-value 

3.793 
1.531*10-4 

3.503 
4.705*10-4 

 SRN vs. SRN2 LSTM vs. LSTM2 
Statistic 
p-value 

0.1043 
0.9169 

–0.2251 
0.8219 

 GRU vs. GRU2 SRN2 vs. SRNGRU 
Statistic 
p-value 

–0.1662 
0.8679 

–3.622 
0.7172 

 LSTM2 vs. SRNLSTM GRU2 vs. SRNGRU 
Statistic 
p-value 

0.9534 
0.3405 

1.4273 
0.1537 

Notes: SRN, LSTM, GRU, SRN2, LSTM2, GRU2, SRNLSTM, and SRNGRU denote 
the best one-layered SRN, one-layered LSTM, one-layered GRU, two-layered SRN, two-
layered LSTM, two-layered GRU, SRNLSTM, and SRNGRU models, based on MAE.  
 

As Table 1 shows, adding the same type of layer can improve the MAE of the best 
one-layered SRN model by 0.0001. Meanwhile, we can improve the MDA of the best 
one-layered SRN model and that of the best one-layered GRU model by 0.22 and 0.17, 
respectively (Table 3). The results of the DM test (Table 5) indicate that at the (5%)/31 
level, there are no statistically significant differences in forecast performance between the 
best one-layered model and the best two-layered model. This result implies that adding 
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the same type of layer does not have a statistically significant effect in terms of improving 
forecast performance. 

In comparing Tables 1 and 2, we find that we can lower the MAE of the best two-
layered GRU and LSTM models by making appropriate hybrid models. Making the first 
layer of the two-layered GRU models an SRN layer, for example, can reduce the MAE 
by 0.0012 from the best two-layered GRU model’s score. As Tables 3 and 4 report, we 
can increase the MDA in the best two-layered SRN and LSTM models by building 
appropriate hybrid models. Substituting the first layer of the two-layered LSTM models 
with an SRN layer, for example, can increase the MDA by 0.39 from the best two-layered 
LSTM model’s score. 

As the results of the DM test indicate (Table 5), at the (5%)/31 level, there are no 
statistically significant differences in forecast performance between the best two-layered 
models and the best hybrid models. This finding implies that combining different types 
of layers does not have a statistically significant effect in terms of improving forecast 
performance. 
 
5. CONCLUSION  
Crude oil is one of the world’s most important resources, and so its price fluctuations 
directly affect the world economy. To mitigate the effects of spreading risks, we need to 
create an accurate forecasting model. In this study, we test methods by which to accurately 
forecast West Texas Intermediate (WTI) futures prices, a benchmark of crude oil pricing, 
using an autoregressive-generalized autoregressive conditional heteroscedasticity (AR-
GARCH) model, a vector autoregression (VAR) model, and four main types of recurrent 
neural network (RNN)-based models (i.e., simple recurrent network, long short-term 
memory, gated recurrent unit, and hybrid models). In comparing the forecasting 
performance of RNN-based models to those of an AR-GARCH model and a VAR model, 
we find that RNN-based models outperform both with respect to mean absolute error 
(MAE) and mean directional accuracy (MDA). Additionally, our Diebold–Mariano test 
(DM test) results confirm statistically significant differences in forecast performance 
between RNN-based models and an AR-GARCH model and between RNN-based models 
and a VAR model. This finding implies that the interrelationships among WTI futures 
prices, the NASDAQ-100, and US soy oil futures prices may be nonlinear. We expect that 
in the future, the use of RNN models to forecast crude oil futures prices will become more 
important; our findings can help inform and thus contribute to this trend.  
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